Pre-publication Release

Scientific Statement

Interim Guidance for Basic and Advanced Life Support in Children and Neonates With Suspected or Confirmed COVID-19

From the Emergency Cardiovascular Care Committee and Get With the Guidelines®-Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of Anesthesiologists

Supporting Organization: American Association of Critical Care Nurses

DOI: 10.1542/peds.2020-1405
Journal: Pediatrics
Article Type: Special Article

© 2020 American Heart Association, Inc.
Reprinted with permission of the American Heart Association, Inc. This article has been published in Circulation.

This is a pre-publication version of an article that has undergone peer review and been accepted for publication but is not the final version of record. This paper may be cited using the DOI and date of access. This paper may contain information that has errors in facts, figures, and statements, and will be corrected in the final published version. The journal is providing an early version of this article to expedite access to this information. The American Academy of Pediatrics, the editors, and authors are not responsible for inaccurate information and data described in this version.
Scientific Statement

Interim Guidance for Basic and Advanced Life Support in Children and Neonates With Suspected or Confirmed COVID-19

From the Emergency Cardiovascular Care Committee and Get With the Guidelines®-Resuscitation Adult and Pediatric Task Forces of the American Heart Association in Collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of Anesthesiologists

Supporting Organization: American Association of Critical Care Nurses

Authors
Alexis Topjian, MD, MSCE, the Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, topjian@email.chop.edu
Khalid Aziz, MBBS, BA, MA, Med (IT), University of Alberta, khalid.aziz@ualberta.ca
Beena D. Kamath-Rayne, MD, MPH, Global Newborn and Child Health, American Academy of Pediatrics, bkamathrayne@aap.org
Dianne L. Atkins, MD Carver College of Medicine, University of Iowa dianne-atkins@uiowa.edu
Lance Becker, MD, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, lance.becker@northwell.edu
Robert A. Berg, MD, the Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, bergra@email.chop.edu
Steven M. Bradley, MD, MPH, FAHA; Minneapolis Heart Institute, Healthcare Delivery Innovation Center; steven.bradley@allina.com
Farhan Bhanji, MD, McGill University farhan.bhanji@mcgill.ca
Steven Brooks, MD, MHSc, Queen’s University, Steven.Brooks@kingstonhsc.ca
Melissa Chan, MD, University of British Columbia, BC Children’s Hospital melissa.chan2@cw.bc.ca
Paul Chan, MD, MS, Mid America Heart Institute and the University of Missouri-Kansas City, paulchan.mahi@gmail.com
Adam Cheng, Alberta Children’s Hospital, University of Calgary, Chenger@me.com
Allan de Caen, MD, Stollery Children’s Hospital, University of Alberta allan.decaen@albertahealthservices.ca
Jonathan P. Duff, MD, MEd, Stollery Children’s Hospital, University of Alberta jduff@ualberta.ca
Marilyn Escobedo, MD, University of Oklahoma, Marilyn-Escobedo@ouhsc.edu
Gustavo E. Flores, MD, NRP, Emergency & Critical Care Trainings, gflores@ecctrainings.com
Susan Fuchs, MD, Ann & Robert H. Lurie Children's Hospital sfuchs@luriechildrens.org
Saket Girotra, MD, SM University of Iowa Carver College of Medicine, saket-girotra@uiowa.edu
Antony Hsu, MD, St Joseph Mercy, antony.hsu@gmail.com
Benny L. Joyner, Jr., MD, MPH, University of North Carolina at Chapel Hill benny@unc.edu

© 2020 American Heart Association, Inc.
Monica Kleinman, MD, Boston Children’s Hospital  Monica.Kleinman@childrens.harvard.edu
Javier J. Lasa, MD, Texas Children’s Hospital  jjilasa@texaschildrens.org
Henry C. Lee, MD, Stanford University, hcllee@stanford.edu
Rebecca E. Lehotzky, PhD, American Heart Association, Becky.Lehotzky@heart.org
Arielle Levy, MD, MEd, University of Montreal
Mary E. Mancini, RN, PhD, NE-BC, The University of Texas at Arlington, mancini@uta.edu
Mary E. McBride, MD, MEd, Ann & Robert H Lurie Children’s Hospital of Chicago/ Northwestern University
Garth Meckler MD, MSHS, University of British Columbia, BC Children’s Hospital
Raina M. Merchant, MD, MSHP, University of Pennsylvania, raina.merchant@uphs.upenn.edu
Ryan W. Morgan, MD, MTR, the Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine
Vinay Nadkarni, MD, MS, the Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, NADKARNI@email.chop.edu
Ashish R. Panchal, MD, PhD, The Ohio State University Wexner Medical Center, Ashish.Panchal@osumc.edu
Mary Ann Peberdy, MD, Virginia Commonwealth University, mpeberdy@aol.com
Tia Raymond, MD, Medical City Children’s Hospital, tiaraymond@me.com
Kathryn Roberts, MSN, RN, CCRN-K, CCNS, the Children’s Hospital of Philadelphia robertskel103@gmail.com
Comilla Sasson, MD, PhD, American Heart Association, comilla.sasson@heart.org
Stephen M. Schexnayder, MD, Arkansas Children’s Hospital SchexnayderSM@uams.edu
Robert M. Sutton, MD, MSCE, the Children’s Hospital of Philadelphia, University of Pennsylvania suttonr@email.chop.edu
Mark Terry, MPA, National Registry of Emergency Medical Technicians mark.terry.ems@gmail.com
Brian Walsh, PhD, RRT, Liberty University, bkwalsh@liberty.edu
David S. Wang, MD, Columbia University Irving Medical Center, dsw2144@columbia.edu
Carolyn M. Zelop, MD, NYU School of Medicine, cmzelop@comcast.net
Dana P. Edelson, MD, MS, University of Chicago, dperes@uchicago.edu

Collaborators
Monique Anderson Starks, MD, MHS, Duke University
Bentley J. Bobrow, MD, University of Texas Health System
Katherine Berg, MD, Beth Israel Deaconess Medical Center
Melissa Mahgoub, PhD, American Heart Association
Michael F. O’Connor, MD, University of Chicago
Amber V. Hoover, RN, MSN, American Heart Association
Amber J. Rodriguez, PhD, American Heart Association
Nicholas M. Mohr, MD, MS, University of Iowa
Boulos Nassar, MD, MPH, University of Iowa
Lewis Rubinson, MD, PhD, Morristown Medical Center
Michael Levy, MD University of Alaska Anchorage

© 2020 American Heart Association, Inc.
Downloaded from www.aappublications.org/news at American Academy of Pediatrics on May 13, 2020
Jose G. Cabanas, MD, MPH Wake County Department of Emergency Medical Services, University of North Carolina at Chapel Hill
David K. Tan, MD, EMT-T, Washington University Physicians
Vivek K. Moitra, MD, MHA, College of Physicians & Surgeons of Columbia University
Joseph W. Szokol, M.D., American Society of Anesthesiologists

Date of Submission:
April 10, 2020

Corresponding Author:
Comilla Sasson, MD, PhD
(847)502-2341
Comilla.sasson@heart.org

© 2020 American Heart Association, Inc.

Reprinted with permission of the American Heart Association, Inc. This article has been published in Circulation.
Background

Existing American Heart Association (AHA) cardiopulmonary resuscitation (CPR) guidelines do not address the challenges of providing resuscitation in the setting of the COVID-19 global pandemic, wherein rescuers must continuously balance the immediate needs of the victims with their own safety. To address this gap, the AHA, in collaboration with the American Academy of Pediatrics, American Association for Respiratory Care, American College of Emergency Physicians, The Society of Critical Care Anesthesiologists, and American Society of Anesthesiologists, and with the support of the American Association of Critical Care Nurses and National EMS Physicians, has compiled interim guidance to help rescuers treat victims of cardiac arrest with suspected or confirmed COVID-19. The interim guidance for the treatment of adults with suspected or confirmed COVID-19 has been published. ¹

Over the last 2 decades, there has been a steady improvement in pediatric cardiac arrest survival occurring both inside and outside of the hospital.² That success has relied on initiating proven resuscitation interventions, such as high-quality chest compressions and defibrillation, within seconds to minutes. The evolving and expanding outbreak of SARS-CoV2 infections has created important challenges to such resuscitation efforts and requires potential modifications of established processes and practices. The challenge is to ensure that patients with or without COVID-19 who experience cardiac arrest get the best possible chance of survival without compromising the safety of rescuers, who will be needed to care for future patients.

Complicating the emergent response to both out-of-hospital and in-hospital cardiac arrest is that COVID-19 is highly transmissible, particularly during resuscitation.

Approximately 12%-19% of COVID-positive adult patients require hospital admission and 3%-6% become critically ill.³⁻⁵ Children, to date, have been not as severely affected by COVID-19, with more than 90% of children in China having mild or moderate disease.⁶ As of April 6th, 2020,⁷ only 1.7% of the almost 150,000 COVID-19 positive patients in the US were children < 18 years of age, consistent with rates seen in Italy.⁸ Children seem to have less severe illness: rates of hospitalization are low and critical illness occurs in < 0.6%.⁹ Children less than one year old are at this highest risk for hospitalization and critical illness.⁷ Mortality due to COVID-19 has only been reported in a handful of children from various countries.⁷ While these numbers are reassuring, the prevalence of infection is likely underestimated as is the child’s ability to transmit disease. In addition, many children are asymptomatic or mildly symptomatic,⁶ presumably impacting how health care providers consider the risk associated with resuscitating children with unknown COVID-19 status.

Healthcare workers are already the highest risk profession for contracting the disease.⁹ This risk is compounded by worldwide shortages of personal protective equipment (PPE). Resuscitations carry added risk to healthcare workers for many reasons. First, the administration of CPR involves performing numerous aerosol-generating procedures, including chest compressions, positive pressure ventilation, and establishment of an advanced airway. During those procedures, viral particles can remain suspended in the air with a half-life of approximately 1 hour and be inhaled by those nearby.¹⁰ Second, resuscitation efforts require numerous providers to work in close proximity to one another and the patient. Finally, these are high-stress emergent events in
which the immediate needs of the patient requiring resuscitation may result in lapses in infection-
control practices.

In arriving at this interim guidance, we reviewed existing AHA CPR recommendations in the
context of the COVID-19 pandemic and considered the unique pathophysiology of COVID-19
with reversal of hypoxemia as a central goal. We sought to balance the competing interests of
providing timely and high-quality resuscitation to patients while simultaneously protecting
rescuers. This statement applies to all pediatric and neonatal resuscitations in patients with
suspected or confirmed COVID-19 infection unless otherwise noted. The guidance contained
herein is based on expert opinion and needs to be adapted locally based on current disease
burden and resource availability.

General Principles for Resuscitation in Suspected and Confirmed COVID-19 Patients

Reduce provider exposure to COVID-19
  •  Rationale: It is essential that providers protect themselves and their colleagues from
    unnecessary exposure. Exposed providers who contract COVID-19 further decrease the
    already strained workforce available to respond and have the potential to add additional
    strain if they become critically ill.
  •  Strategies:
    1. Before entering the scene, all rescuers should don PPE to guard against contact with
       both airborne and droplet particles. Consult individual health or emergency medical
       services (EMS) system standards as PPE recommendations may vary considerably on
       the basis of current epidemiologic data and availability.
    2. Limit personnel in the room or on the scene to only those essential for patient care.
    3. In settings with protocols and expertise in place for their use, consider replacing
       manual chest compressions with mechanical CPR devices to reduce the number of
       rescuers required for adolescents who meet the manufacturers height and weight
       criteria.
    4. Clearly communicate COVID-19 status to any new providers before their arrival on
       the scene or receipt of the patient when transferring to a second setting.

Prioritize oxygenation and ventilation strategies with lower aerosolization risk.
  •  Rationale: While the procedure of intubation carries a high risk of aerosolization, if the
    patient is intubated with a cuffed endotracheal tube and connected to a ventilator with a high-
    efficiency particulate air (HEPA) filter in the path of exhaled gas and an in-line suction
    catheter, the resulting closed circuit carries a lower risk of aerosolization than any other form
    of positive-pressure ventilation.11
  •  Strategies:
    5. Attach a HEPA filter securely, if available, to any manual or mechanical ventilation
       device in the path of exhaled gas before administering any breaths.
    6. After healthcare providers assess the rhythm and defibrillate any ventricular
       arrhythmias, patients in cardiac arrest should be intubated with a cuffed tube, at the
       earliest feasible opportunity. Connect the endotracheal tube to a ventilator with a
       HEPA filter, when available.

© 2020 American Heart Association, Inc.

Downloaded from www.aappublications.org/news at American Academy of Pediatrics on May 13, 2020
7. Minimize the likelihood of failed intubation attempts by
   a) Assigning the provider and approach with the best chance of first-pass success to intubate
   b) Pausing chest compressions to intubate
8. Video laryngoscopy may reduce intubator exposure to aerosolized particles and should be considered, if available.
9. Before intubation, use a bag-mask device (or T-piece in neonates) with a HEPA filter and a tight seal.
10. If intubation is delayed, consider manual ventilation with a supraglottic airway or bag-mask device with a HEPA filter.
11. Once on a closed circuit, minimize disconnections to reduce aerosolization.

Consider the appropriateness of starting and continuing resuscitation.

- **Rationale:** Cardiopulmonary resuscitation is a high-intensity team effort that diverts rescuer attention away from other patients. In the context of COVID-19, the risk to the clinical team is increased and resources can be more significantly limited, particularly in regions that are experiencing a high burden of disease. It is reasonable to consider comorbidities and severity of illness in determining the appropriateness of resuscitation and balance the likelihood of success against the risk to rescuers and patients from whom resources are being diverted.

- **Strategies:**
  12. Address goals of care with COVID-19 patients (or proxy) in anticipation of the potential need for increased levels of care.
  13. Healthcare systems should consider policies to guide front-line providers in determining the appropriateness of starting and terminating CPR, taking into account COVID-19 status, comorbidities and severity of illness to estimate the likelihood of survival. Risk stratification and policies should be communicated to patients (or proxy) during goals of care discussions.
  14. There is insufficient data to support extracorporeal cardiopulmonary resuscitation (E-CPR) for COVID-19 patients.
Figure 1. Summary of adjustments to CPR algorithms in suspected or confirmed COVID-19 patients.

Reduce provider exposure
- Don PPE before entering the room/scene
- Limit personnel
- Consider using mechanical CPR devices for adolescents who meet height and weight criteria
- Communicate COVID-19 status to any new providers

Prioritize oxygenation and ventilation strategies with lower aerosolization risk
- Use a HEPA filter, if available, for all ventilation
- Intubate early with a cuffed tube, if possible, and connect to mechanical ventilator, when able
- Engage the intubator with highest chance of first-pass success
- Pause chest compressions to intubate
- Consider use of video laryngoscopy, if available
- Before intubation, use a bag-mask device (or T-piece in neonates) with a HEPA filter and a tight seal
- If intubation delayed, consider supraglottic airway
- Minimize closed circuit disconnections

Consider resuscitation appropriateness
- Address goals of care
- Consider policies to guide determination, taking into account patient risk factors for survival

Algorithms With Key Changes
Figures 2-4 reflect COVID-19 specific updates to the Pediatric Basic Life Support, and Pediatric Cardiac Arrest algorithms and are meant to replace the standard algorithms in patients with suspected or confirmed COVID-19 disease. In COVID-19 negative patients, or where COVID-19 is not suspected, cardiac arrest resuscitations should proceed according to the standard algorithms. New boxes specific to COVID-19 are in yellow, and new guidance specific to COVID-19 is bolded and underlined.

Figure 2. BLS Healthcare Provider Pediatric Cardiac Arrest Algorithm for the Single Rescuer for Suspected or Confirmed COVID-19 Patients

Figure 3. BLS Healthcare Provider Pediatric Cardiac Arrest Algorithm for 2 or More Rescuers for Suspected or Confirmed COVID-19 Patients
Figure 4. Pediatric Cardiac Arrest Algorithm for Suspected or Confirmed COVID-19 Patients

Situation- and Setting-Specific Considerations

Out-of-Hospital Cardiac Arrest (OHCA)
Below are specific considerations for cardiac arrest in victims with suspected or confirmed COVID-19 occurring outside of the hospital. Depending on local prevalence of disease and evidence of community spread, it may be reasonable to suspect COVID-19 in all OHCA, by default.

- Lay rescuers:
  Bystander CPR has consistently been shown to improve the likelihood of survival from OHCA, which decreases with every minute that CPR and defibrillation are delayed.\textsuperscript{14-16} Rescuers in the community are unlikely to have access to adequate PPE and, therefore, are at increased risk of exposure to COVID-19 during CPR, compared to healthcare providers with adequate PPE. Rescuers with increasing age and the presence of comorbid conditions, such as heart disease, diabetes, hypertension, and chronic lung disease,\textsuperscript{5} are at increased risk of becoming critically ill if infected with SARS-CoV2. However, when the cardiac arrest occurs at home (as has been reported in 70% of OHCA\textsuperscript{16} before the recent wide-spread shelter-at-home ordinances) lay rescuers are likely to already have been exposed to COVID-19.

  - Chest compressions
    - Lay rescuers should perform chest compressions and consider mouth-to-mouth ventilation, if willing and able, given the higher incidence of respiratory arrest in children,\textsuperscript{16} especially if they are household members who have been exposed to the victim at home.
  - Public access defibrillation
    - Because defibrillation is not expected to be a highly aerosolizing procedure, lay rescuers should use an automated external defibrillator, if available, to assess and treat victims of OHCA.

- EMS
  - Transport
    - Family members and other contacts of patients with suspected or confirmed COVID-19 should not ride in the transport vehicle.

In-Hospital Cardiac Arrest (IHCA)
Below are specific considerations for patients with suspected or confirmed COVID-19 in the hospital setting. These interim guidelines do not apply to patients who are known to be COVID-19 negative. Those patients should receive standard basic and advanced life support. However, it may be reasonable to reduce personnel in the room for all resuscitations during the pandemic for social distancing purposes.

- Prearrest

© 2020 American Heart Association, Inc.
Downloaded from www.aappublications.org/news at American Academy of Pediatrics on May 13, 2020
Address advanced care directives and goals of care with all suspected or confirmed COVID-19 patients’ legally authorized representative on hospital arrival and with any significant change in clinical status, such as an increase in level of care.

- Closely monitor for signs and symptoms of clinical deterioration to minimize the need for emergent intubations that put patients and providers at higher risk.
- If the patient is at risk for cardiac arrest, consider proactively moving the patient to a negative pressure room/unit, if available, to minimize risk of exposure to rescuers during a resuscitation.

- Close the door, when possible, to prevent airborne contamination of adjacent indoor space.

- Intubated patients at the time of cardiac arrest
  - Consider leaving the patient on a mechanical ventilator with HEPA filter to maintain a closed circuit and reduce aerosolization.
  - Adjust the ventilator settings to allow for asynchronous ventilation (synchronous for neonates). There is insufficient data regarding the optimal ventilator mode during CPR. Consider the following suggestions:
    - Increase the FiO₂ to 1.0.
    - Use either Pressure Control or Volume Control Ventilation to generate adequate chest rise while limiting pressure (4-6 mL/kg ideal body weight is often targeted).
    - Adjust the trigger to Off to prevent the ventilator from auto-triggering with chest compressions and possibly prevent hyperventilation and air trapping.
    - Adjust respiratory rate to 10/min for children and 30/min for neonates.
    - Assess the need to adjust positive end-expiratory pressure level to balance lung volumes and venous return.
    - Adjust alarms to prevent alarm fatigue.
    - Ensure endotracheal tube/tracheostomy and ventilator circuit security to prevent unplanned extubation.
  - If return of spontaneous circulation is achieved, set ventilator settings as appropriate to patient’s clinical condition.

- Prone patients at the time of arrest
  - For suspected or confirmed COVID-19 patients who are in a prone position without an advanced airway, attempt to place in the supine position for continued resuscitation.
  - While the effectiveness of CPR in the prone position is not completely known, for patients who are in the prone position with an advanced airway, avoid turning the larger patient to the supine position unless able to do so without risk of equipment disconnections and aerosolization. Instead, consider placing defibrillator pads in the anterior-posterior position and provide CPR with the patient remaining prone with hands in the standard position over the T7/10 vertebral bodies.¹⁷

- Post-arrest patients
  - Consult local infection control practices regarding transport after resuscitation.

© 2020 American Heart Association, Inc.
Downloaded from www.aappublications.org/news at American Academy of Pediatrics on May 13, 2020
Maternal and Neonatal Considerations

Neonatal resuscitation: Every newly born baby should have a skilled attendant prepared to resuscitate irrespective of COVID-19 status. Although it remains unclear if newly born babies are infected or likely to be infectious when mothers have suspected or confirmed COVID-19, providers should don appropriate PPE. The mother is a potential source of aerosolization for the neonatal team.  

- Initial steps: Routine neonatal care and the initial steps of neonatal resuscitation are unlikely to be aerosol-generating; they include drying, tactile stimulation, placement into a plastic bag or wrap, assessment of heart rate, placement of pulse oximetry and electrocardiograph leads.
- Suction: Suction of the airway after delivery should not be performed routinely for clear or meconium-stained amniotic fluid. Suctioning is an aerosol-generating procedure and is not indicated for uncomplicated deliveries.
- Endotracheal medications: Endotracheal instillation of medications, such as surfactant or epinephrine, are aerosol-generating procedures, especially via an uncuffed tube. Intravenous delivery of epinephrine via a low-lying umbilical venous catheter is the preferred route of administration during neonatal resuscitation.
- Closed incubators: Closed incubator transfer and care (with appropriate distancing) should be used for neonatal intensive care patients when possible but do not protect from aerosolization of virus.

Maternal cardiac arrest: The tenets of maternal cardiac arrest are unchanged for women with suspected or confirmed COVID-19.

- The cardiopulmonary physiological changes of pregnancy may increase the risk of acute decompensation in critically ill pregnant patients with COVID-19.
- Preparation for perimortem delivery, to occur after 4 minutes of resuscitation, should be initiated early in the resuscitation algorithm to allow the assembly of obstetrical and neonatal teams with PPE even if ROSC is achieved and perimortem delivery is not required.

References


https://www.ecri.org/components/HDJournal/Pages/Mechanical-Ventilation-of-SARS-Patients2003-SARS-Outbreak.aspx#


© 2020 American Heart Association, Inc.
Downloaded from www.aappublications.org/news at American Academy of Pediatrics on May 13, 2020


BLS Healthcare Provider
Pediatric Cardiac Arrest Algorithm for the Single Rescuer for Suspected or Confirmed COVID-19 Patients

Updated April 2020

1. Verify scene safety
   - Don PPE
   - Limit personnel

2. Victim is unresponsive. Shout for nearby help. Activate emergency response system via mobile device (if appropriate).

3. Look for no breathing or only gasping and check pulse (simultaneously). Is pulse definitely felt within 10 seconds?

   - Normal breathing, has pulse
     - Activate emergency response system (if not already done). Return to victim and monitor until emergency responders arrive.

   - No normal breathing, has pulse
     - Provide rescue breathing using bag-mask device with filter and tight seal.
       - 1 breath every 3-5 seconds, or about 12-20 breaths/min.
       - Add compressions if pulse remains ≤60/min with signs of poor perfusion.
     - Activate emergency response system (if not already done) after 2 minutes.
     - Continue rescue breathing; check pulse about every 2 minutes. If no pulse, begin CPR (go to “CPR” box).

4. No breathing or only gasping, no pulse

5. Witnessed sudden collapse?
   - Yes
     - Activate emergency response system (if not already done), and retrieve AED/defibrillator.
   - No
     - CPR
       - 1 rescuer: Begin cycles of 30 compressions and 2 breaths using bag-mask device with filter and tight seal.
         (Use 15:2 ratio if second rescuer arrives.) Use AED as soon as it is available.

6. After about 2 minutes, if still alone, activate emergency response system and retrieve AED (if not already done).

7. AED analyzes rhythm. Shockable rhythm?
   - Yes, shockable
     - Give 1 shock. Resume CPR immediately for about 2 minutes (until prompted by AED to allow rhythm check). Continue until ALS providers take over or victim starts to move.
   - No, nonshockable
     - Resume CPR immediately for about 2 minutes (until prompted by AED to allow rhythm check). Continue until ALS providers take over or victim starts to move.
Figure 3

BLS Healthcare Provider
Pediatric Cardiac Arrest Algorithm for 2 or More Rescuers
for Suspected or Confirmed COVID-19 Patients

Updated April 2020

Verify scene safety
- Don PPE
- Limit personnel

Victim is unresponsive. Shout for nearby help. First rescuer remains with victim. Second rescuer activates emergency response system and retrieves AED and emergency equipment.

Monitor until emergency responders arrive.

Normal breathing, has pulse

Look for no breathing or only gasping and check pulse (simultaneously). Is pulse definitely felt within 10 seconds?

No normal breathing, has pulse

No breathing or only gasping, no pulse

CPR
First rescuer begins CPR with 30:2 ratio (compressions to breaths) using bag-mask device with filter and tight seal. When second rescuer returns, use 15:2 ratio (compressions to breaths). Use AED as soon as it is available.

AED analyzes rhythm. Shockable rhythm?

Yes, shockable
Give 1 shock. Resume CPR immediately for about 2 minutes (until prompted by AED to allow rhythm check). Continue until ALS providers take over or victim starts to move.

No, nonshockable
Resume CPR immediately for about 2 minutes (until prompted by AED to allow rhythm check). Continue until ALS providers take over or victim starts to move.

© 2020 American Heart Association
Figure 4
Pediatric Cardiac Arrest Algorithm for Suspected or Confirmed COVID-19 Patients

Updated April 2020

Pre-publication Release

CPR Quality
- Push hard (2/3 of anteroposterior diameter of chest) and fast (100-120/min) and allow complete chest recoil.
- Minimize interruptions in compressions.
- Avoid excessive ventilation.
- Change compressor every 2 minutes, or sooner if fatigued.
- If no advanced airway, 15:2 compression-ventilation ratio.

Shock Energy for Defibrillation
First shock 2 J/kg, second shock 4 J/kg, subsequent shocks 24 J/kg, maximum 10 J/kg or adult dose.

Advanced Airway
- Minimize closed-circuit disconnection
- Use intubator with highest likelihood of first pass success
- Consider video laryngoscopy
- Prefer cuffed endotracheal tube if available
- Endotracheal intubation or supraglottic advanced airway
- Waveform capnography or capnometry to confirm and monitor ET tube placement
- Once advanced airway in place, give 1 breath every 6 seconds (10 breaths/min) with continuous chest compressions

Drug Therapy
- Epinephrine IO/IV dose: 0.01 mg/kg (0.1 mL/kg of the 0.1 mg/mL concentration). Repeat every 3-5 minutes.
- Amiodarone IO/IV dose: 5 mg/kg bolus during cardiac arrest. May repeat up to 2 times for refractory VF/pulseless VT. or Lidocaine IO/IV dose: Initial: 1 mg/kg loading dose. Maintenance: 20-50 mcg/kg per minute infusion (repeat bolus dose if infusion initiated >15 minutes after initial bolus therapy).

Return of Spontaneous Circulation (ROSC)
- Pulse and blood pressure
- Spontaneous arterial pressure waves with intra-arterial monitoring

Reversible Causes
- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypoglycemia
- Hypo-/hyperkalemia
- Hypothermia
- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

© 2020 American Heart Association
Downloaded from www.aappublications.org/news at American Academy of Pediatrics on May 13, 2020
Interim Guidance for Basic and Advanced Life Support in Children and Neonates With Suspected or Confirmed COVID-19

*Pediatrics* originally published online May 4, 2020;

<table>
<thead>
<tr>
<th>Updated Information &amp; Services</th>
<th>including high resolution figures, can be found at: <a href="http://pediatrics.aappublications.org/content/early/2020/04/13/peds.2020-1405.citation">http://pediatrics.aappublications.org/content/early/2020/04/13/peds.2020-1405.citation</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissions &amp; Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: <a href="http://www.aappublications.org/site/misc/Permissions.xhtml">http://www.aappublications.org/site/misc/Permissions.xhtml</a></td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: <a href="http://www.aappublications.org/site/misc/reprints.xhtml">http://www.aappublications.org/site/misc/reprints.xhtml</a></td>
</tr>
</tbody>
</table>
Interim Guidance for Basic and Advanced Life Support in Children and Neonates With Suspected or Confirmed COVID-19

Pediatrics originally published online May 4, 2020;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/early/2020/04/13/peds.2020-1405.citation